A global compilation of coccolithophore calcification rates

Chris J. Daniels, Alex J. Poulton, William M. Balch, Emilio Marañon, Alex J. Poulton, Bruce C. Bowler, Pedro Cermeño, Anastasia Charalampopoulou, David W. Crawford, Dave Drapeau, Yuanyuan Feng, Ana Fernández, Emilio Fernández, Glaucia M. Fragoso, Natalia González, Lisa M. Graziano, Rachel Heslop, Patrick M. Holligan, Jason Hopkins, María Huete-OrtegaDavid A. Hutchins, Phoebe J. Lam, Michael S. Lipsen, Daffne C. López-Sandoval, Socratis Loucaides, Adrian Marchetti, Kyle M. J. Mayers, Andrew P. Rees, Cristina Sobrino, Eithne Tynan, Toby Tyrrell

Research output: Contribution to journalArticlepeer-review

22 Scopus citations


The biological production of calcium carbonate (CaCO3), a process termed calcification, is a key term in the marine carbon cycle. A major planktonic group responsible for such pelagic CaCO3 production (CP) is the coccolithophores, single-celled haptophytes that inhabit the euphotic zone of the ocean. Satellitebased estimates of areal CP are limited to surface waters and open-ocean areas, with current algorithms utilising the unique optical properties of the cosmopolitan bloom-forming species Emiliania huxleyi, whereas little understanding of deep-water ecology, optical properties or environmental responses by species other than E. huxleyi is currently available to parameterise algorithms or models. To aid future areal estimations and validate future modelling efforts we have constructed a database of 2765 CP measurements, the majority of which were measured using 12 to 24 h incorporation of radioactive carbon (14C) into acid-labile inorganic carbon (CaCO3). We present data collated from over 30 studies covering the period from 1991 to 2015, sampling the Atlantic, Pacific, Indian, Arctic and Southern oceans. Globally, CP in surface waters (< 20 m) ranged from 0.01 to 8398 μmol Cm3 d1 (with a geometric mean of 16.1 μmol Cm3 d1). An integral value for the upper euphotic zone (herein surface to the depth of 1% surface irradiance) ranged from < 0:1 to 6 mmol Cm2 d1 (geometric mean 1.19 mmol Cm2 d1). The full database is available for download from PANGAEA at https://doi.org/10.1594/PANGAEA.888182.
Original languageEnglish (US)
Pages (from-to)1859-1876
Number of pages18
JournalEarth System Science Data
Issue number4
StatePublished - Oct 16 2018

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The authors wish to thank the research scientists, technicians, students and crew who contributed to the collection of these data. The authors also recognise funding from the UK Natural Environmental Research Council (NERC), the US National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the Spanish Ministry of Science and Innovation.


Dive into the research topics of 'A global compilation of coccolithophore calcification rates'. Together they form a unique fingerprint.

Cite this