A Generative Adversarial Network for Financial Advisor Recruitment in Smart Crowdsourcing Platforms

Raby Hamadi, Hakim Ghazzai, Yehia Massoud*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Financial portfolio management is a very time-consuming task as it requires the continuous surveying of the market volatility. Investors need to hire potential financial advisors to manage portfolios on their behalf. Efficient hiring of financial advisors not only facilitates their cooperation with investors but also guarantees optimized portfolio returns and hence, optimized benefits for the two entities. In this paper, we propose to tackle the portfolio optimization problem by efficiently matching financial advisors to investors. To this end, we model the problem as an automated crowdsourcing platform to organize the cooperation between the different actors based on their features. The recruitment of financial advisors is performed using a Generative Adversarial Network (GAN) that extrapolates the problem to an image processing task where financial advisors’ features are encapsulated in gray-scale images. Hence, the GAN is trained to generate, based on an investor profile given as an input, the ’ideal’ financial advisor profile. Afterwards, we measure the level of similarity between the generated ideal profiles and the existing profiles in the crowdsourcing database to perform a low complexity, many-to-many investor-to-financial advisor matching. In the simulations, intensive tests were performed to show the convergence and effectiveness of the proposed GAN-based solution. We have shown that the proposed method achieves more than 17% of the average expected return compared to baseline approaches.

Original languageEnglish (US)
Article number9830
JournalApplied Sciences (Switzerland)
Volume12
Issue number19
DOIs
StatePublished - Oct 2022

Bibliographical note

Publisher Copyright:
© 2022 by the authors.

Keywords

  • crowdsourcing
  • financial technology
  • generative adversarial networks
  • portfolio optimization

ASJC Scopus subject areas

  • General Materials Science
  • Instrumentation
  • General Engineering
  • Process Chemistry and Technology
  • Computer Science Applications
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'A Generative Adversarial Network for Financial Advisor Recruitment in Smart Crowdsourcing Platforms'. Together they form a unique fingerprint.

Cite this