A Game-theoretic Framework for Network Coding Based Device-to-Device Communications

Research output: Contribution to journalArticlepeer-review

13 Scopus citations


This paper investigates the delay minimization problem for instantly decodable network coding (IDNC) based deviceto- device (D2D) communications. In D2D enabled systems, users cooperate to recover all their missing packets. The paper proposes a game theoretic framework as a tool for improving the distributed solution by overcoming the need for a central controller or additional signaling in the system. The session is modeled by self-interested players in a non-cooperative potential game. The utility functions are designed so as increasing individual payoff results in a collective behavior achieving both a desirable system performance in a shared network environment and the Nash equilibrium. Three games are developed whose first reduces the completion time, the second the maximum decoding delay and the third the sum decoding delay. The paper, further, improves the formulations by including a punishment policy upon collision occurrence so as to achieve the Nash bargaining solution. Learning algorithms are proposed for systems with complete and incomplete information, and for the imperfect feedback scenario. Numerical results suggest that the proposed game-theoretical formulation provides appreciable performance gain against the conventional point-to-multipoint (PMP), especially for reliable user-to-user channels.
Original languageEnglish (US)
Pages (from-to)901-917
Number of pages17
JournalIEEE Transactions on Mobile Computing
Issue number4
StatePublished - Jun 29 2016

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01


Dive into the research topics of 'A Game-theoretic Framework for Network Coding Based Device-to-Device Communications'. Together they form a unique fingerprint.

Cite this