A fast-multipole domain decomposition integral equation solver for characterizing electromagnetic wave propagation in mine environments

Abdulkadir C. Yücel, Yang Liu, Hakan Bagci, Eric Michielssen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Reliable and effective wireless communication and tracking systems in mine environments are key to ensure miners' productivity and safety during routine operations and catastrophic events. The design of such systems greatly benefits from simulation tools capable of analyzing electromagnetic (EM) wave propagation in long mine tunnels and large mine galleries. Existing simulation tools for analyzing EM wave propagation in such environments employ modal decompositions (Emslie et. al., IEEE Trans. Antennas Propag., 23, 192-205, 1975), ray-tracing techniques (Zhang, IEEE Tran. Vehic. Tech., 5, 1308-1314, 2003), and full wave methods. Modal approaches and ray-tracing techniques cannot accurately account for the presence of miners and their equipments, as well as wall roughness (especially when the latter is comparable to the wavelength). Full-wave methods do not suffer from such restrictions but require prohibitively large computational resources. To partially alleviate this computational burden, a 2D integral equation-based domain decomposition technique has recently been proposed (Bakir et. al., in Proc. IEEE Int. Symp. APS, 1-2, 8-14 July 2012). © 2013 IEEE.
Original languageEnglish (US)
Title of host publication2013 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium)
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
ISBN (Print)9781479911295
DOIs
StatePublished - Jul 2013

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01

Fingerprint

Dive into the research topics of 'A fast-multipole domain decomposition integral equation solver for characterizing electromagnetic wave propagation in mine environments'. Together they form a unique fingerprint.

Cite this