A family of porous lonsdaleite-e networks obtained through pillaring of decorated kagomé lattice sheets

Alexander Schoedel, Wesley Boyette, Łukasz Wojtas, Mohamed Eddaoudi, Michael J. Zaworotko

Research output: Contribution to journalArticlepeer-review

94 Scopus citations

Abstract

A new and versatile class of metal-organic materials (MOMs) with augmented lonsdaleite-e (lon-e-a) topology is presented herein. This family of lon-e nets are built by pillaring of hexagonal two-dimensional kagomé (kag) lattices constructed from well-known [Zn2(CO2R)4] paddlewheel molecular building blocks (MBBs) connected by 1,3- benzenedicarboxylate (bdc2-) linkers. The pillars are [Cr 3(μ3-O)(RCO2)]6 trigonal prismatic primary MBBs decorated by six pyridyl moieties (tp-PMBB-1). The three-fold symmetry (D3h) of tp-PMBB-1 is complementary with the alternating orientation of the axial sites of the paddlewheel MBBs and enables triple cross-linking of the kag layers by each pillar. These MOMs represent the first examples of axial-to-axial pillared undulating kag layers, and they are readily fine-tuned because the bdc2- moieties can be varied at their 5-position without changing the overall structure. This lon-e platform possesses functionalized hexagonal channels since the kag lattices are necessarily eclipsed. The effects of the substituent at the 5-positions of the bdc 2- linkers upon gas adsorption, particularly the heats of adsorption of carbon dioxide and methane, were studied. © 2013 American Chemical Society.
Original languageEnglish (US)
Pages (from-to)14016-14019
Number of pages4
JournalJournal of the American Chemical Society
Volume135
Issue number38
DOIs
StatePublished - Sep 11 2013

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): FIC/2010/06
Acknowledgements: This work is supported by Award No. FIC/2010/06, made by the King Abdullah University of Science and Technology (KAUST). The authors thank Prof. D. M. Proserpio (Universita stegli di Milano) for assistance with topological classification.

ASJC Scopus subject areas

  • Biochemistry
  • Colloid and Surface Chemistry
  • General Chemistry
  • Catalysis

Fingerprint

Dive into the research topics of 'A family of porous lonsdaleite-e networks obtained through pillaring of decorated kagomé lattice sheets'. Together they form a unique fingerprint.

Cite this