A droplet reactor on a super-hydrophobic surface allows control and characterization of amyloid fibril growth

Peng Zhang, Manola Moretti, Marco Allione, Yuansi Tian, Javier Ordonez-Loza, Davide Altamura, Cinzia Giannini, Bruno Torre, Gobind Das, Erqiang Li, Sigurdur T Thoroddsen, Mani Sarathy, Ida Autiero, Andrea Giugni, Francesco Gentile, N. Malara, Monica Marini, Enzo M. Di Fabrizio

Research output: Contribution to journalArticlepeer-review

13 Scopus citations


Methods to produce protein amyloid fibrils, in vitro, and in situ structure characterization, are of primary importance in biology, medicine, and pharmacology. We first demonstrated the droplet on a super-hydrophobic substrate as the reactor to produce protein amyloid fibrils with real-time monitoring of the growth process by using combined light-sheet microscopy and thermal imaging. The molecular structures were characterized by Raman spectroscopy, X-ray diffraction and X-ray scattering. We demonstrated that the convective flow induced by the temperature gradient of the sample is the main driving force in the growth of well-ordered protein fibrils. Particular attention was devoted to PHF6 peptide and full-length Tau441 protein to form amyloid fibrils. By a combined experimental with the molecular dynamics simulations, the conformational polymorphism of these amyloid fibrils were characterized. The study provided a feasible procedure to optimize the amyloid fibrils formation and characterizations of other types of proteins in future studies.
Original languageEnglish (US)
JournalCommunications Biology
Issue number1
StatePublished - Aug 20 2020

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): OCRF-2014-CRG, OCRF-2016-CRG
Acknowledgements: The authors acknowledge financial support from King Abdullah University of Science and Technology for OCRF-2014-CRG and OCRF-2016-CRG grants and from Piedmont Region through European Funds for Regional Development (“Food Digital Monitoring” project). And Istituto di Cristallografia—Consiglio Nazionale delle Ricerche (IC-CNR) would like to thank the funding from MIUR (Italian Ministry for Education, University and Re-search) in the “PON Ricerca e Competitività 2007–2013” Program: ReCaS (Azione I—Interventi di rafforzamento strutturale, PONa3_00052, Avviso 254/Ric) and PRISMA (Asse II—Sostegno ll’innovazione, PON04a2_A).


Dive into the research topics of 'A droplet reactor on a super-hydrophobic surface allows control and characterization of amyloid fibril growth'. Together they form a unique fingerprint.

Cite this