TY - JOUR
T1 - A Data-Driven Soft Sensor to Forecast Energy Consumption in Wastewater Treatment Plants: A Case Study
AU - Harrou, Fouzi
AU - Cheng, Tuoyuan
AU - Sun, Ying
AU - Leiknes, TorOve
AU - Ghaffour, NorEddine
N1 - KAUST Repository Item: Exported on 2020-10-15
PY - 2020
Y1 - 2020
N2 - Energy consumption is vital to the global costs of wastewater treatment plants (WWTPs). With the increase of installed WWTPs worldwide, the modeling and forecast of their energy consumption have become a critical factor in WWTP design to meet environmental and economic requirements. The accurate and swift energy consumption forecasting soft-sensors are not only supportive to the daily electric and financial budgeting by WWTP practitioners on the micro-scale, but also beneficial to local municipal operation and fundamental to regional environmental impact estimation on the macro-scale. Energy consumption in WWTPs is influenced by different biological and environmental factors, making it complicated and challenging to build soft-sensors. This paper intends to provide short-term forecasting of WWTP energy consumption based on data-driven soft sensors using traditional time-series and deep learning methods. Ten data-driven soft sensors, including the ordinary least square, exponential smoothing state space, local regression, auto-regressive integrated moving average (ARIMA), structural time series model, Bayesian structural time series, non-linear auto-regressive, long short-term memory with and without updates, and gated recurrent units have been investigated and compared for WWTP energy consumption forecasting. Energy consumption time-series data from a membrane bioreactor-based WWTP in the middle east is used to evaluate the performances of the proposed soft-sensors. Results showed that ARIMA achieved slightly improved performances, among others. The employment of adaptive deep learning-based soft sensors is expected to enhance the capabilities of the deep models to quickly and accurately follow the trend of future data.
AB - Energy consumption is vital to the global costs of wastewater treatment plants (WWTPs). With the increase of installed WWTPs worldwide, the modeling and forecast of their energy consumption have become a critical factor in WWTP design to meet environmental and economic requirements. The accurate and swift energy consumption forecasting soft-sensors are not only supportive to the daily electric and financial budgeting by WWTP practitioners on the micro-scale, but also beneficial to local municipal operation and fundamental to regional environmental impact estimation on the macro-scale. Energy consumption in WWTPs is influenced by different biological and environmental factors, making it complicated and challenging to build soft-sensors. This paper intends to provide short-term forecasting of WWTP energy consumption based on data-driven soft sensors using traditional time-series and deep learning methods. Ten data-driven soft sensors, including the ordinary least square, exponential smoothing state space, local regression, auto-regressive integrated moving average (ARIMA), structural time series model, Bayesian structural time series, non-linear auto-regressive, long short-term memory with and without updates, and gated recurrent units have been investigated and compared for WWTP energy consumption forecasting. Energy consumption time-series data from a membrane bioreactor-based WWTP in the middle east is used to evaluate the performances of the proposed soft-sensors. Results showed that ARIMA achieved slightly improved performances, among others. The employment of adaptive deep learning-based soft sensors is expected to enhance the capabilities of the deep models to quickly and accurately follow the trend of future data.
UR - http://hdl.handle.net/10754/665544
UR - https://ieeexplore.ieee.org/document/9220914/
U2 - 10.1109/JSEN.2020.3030584
DO - 10.1109/JSEN.2020.3030584
M3 - Article
SN - 2379-9153
SP - 1
EP - 1
JO - IEEE Sensors Journal
JF - IEEE Sensors Journal
ER -