Abstract
Fall detection is a crucial issue in the health care of seniors. In this work, we propose an innovative method for detecting falls via a simple human body descriptors. The extracted features are discriminative enough to describe human postures and not too computationally complex to allow a fast processing. The fall detection is addressed as a statistical anomaly detection problem. The proposed approach combines modeling using principal component analysis modeling with the exponentially weighted moving average (EWMA) monitoring chart. The EWMA scheme is applied on the ignored principal components to detect the presence of falls. Using two different fall detection datasets, URFD and FDD, we have demonstrated the greater sensitivity and effectiveness of the developed method over the conventional PCA-based methods.
Original language | English (US) |
---|---|
Pages (from-to) | 333-338 |
Number of pages | 6 |
Journal | IFAC-PapersOnLine |
Volume | 49 |
Issue number | 5 |
DOIs | |
State | Published - Jul 26 2016 |
Bibliographical note
KAUST Repository Item: Exported on 2023-08-04Acknowledged KAUST grant number(s): OSR-2015-CRG4-258
Acknowledgements: This publication is based upon work supported by the King Ab-dullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No:OSR-2015-CRG4-2582.