A computational study of unsteady laminar premixed methane/air flames with composition oscillations

Sotaro Miyamae, Bok Jik Lee, Hong G. Im, Toshihisa Ueda

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The effects of composition oscillations on the laminar premixed methane/air flames are investigated using computational simulations of unsteady one-dimensional counterflow flames. The code, OPUS, had been developed based on OPPDIF, solving an unsteady opposed-flow combustion configuration, including detailed chemical kinetics (GRI-mech 3.0) and transport model. The flame response to fuel concentration oscillation was numerically investigated for both lean and rich flame conditions. Methane/air mixtures with periodic equivalence ratio oscillations of 2-200 Hz were issued from the burner exit with 1.0 m/s uniform velocity profile. When the fuel concentration ratio was oscillated, the variation in flame temperature, flame location and the consumption speed did not follow those for the steady state condition and established a limit cycles. In the lean case, flame position oscillation made a clockwise limit cycle, while flame location made a counter-clockwise cycle in the rich case. In addition, flame temperature oscillation and consumption speed oscillation made counter-clockwise limit cycles in lean case, while flame temperature and consumption speed oscillation made clockwise cycles in the rich case. The behavior is attributed the effect of the heat transport from downstream burned gases, whose temperature oscillates in response to the imposed equivalence ratio oscillation. Furthermore, the limit cycles were significantly inclined at higher frequencies. The amplitude of the oscillation decreases with increasing frequency of the concentration oscillation at the Strouhal number larger than unity, suggesting that the unity Strouhal number serves as a reasonable criterion for the onset of unsteady flame response.
Original languageEnglish (US)
Title of host publication10th Asia-Pacific Conference on Combustion, ASPACC 2015
PublisherCombustion Institute
StatePublished - Jan 1 2015

Bibliographical note

KAUST Repository Item: Exported on 2020-12-24

Fingerprint

Dive into the research topics of 'A computational study of unsteady laminar premixed methane/air flames with composition oscillations'. Together they form a unique fingerprint.

Cite this