A chemical route for the preparation of nanosized rare earth perovskite-type oxides for electroceramic applications

Enrico Traversa, Masatomi Sakamoto, Yoshihiko Sadaoka

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

This paper reviews the work performed by the authors on the preparation of LnTO3 (Ln = rare earth elements, and T = transition metals) perovskite-type oxides by the thermal decomposition at low temperatures of the corresponding heteronuclear complexes. Bimetallic complexes in the series Ln[Fe(CN6)]·nH2O and Ln[Co(CN6)] nH2O, with Ln = from La through Yb, and trimetallic complexes in the series Ln1xLnnl-x[Co(CN6)] nH2O and Ln[FeyCo1-y(CN6)] nH2O were prepared. The formation of the perovskite-type oxides by the thermal decomposition of the complexes has been studied by simultaneous thermogravimetric and differential thermal analysis (TG/DTA), x-ray fluorescence (XRF), Fourier transform infrared (FTTR) spectroscopy, x-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The composition and temperature limits of stability for the dimetallic and trimetallic perovskite-type oxides have been clarified. The major role played by the ionic radii of the Ln3+ and T3+ ions on the formation of the perovskite-type oxides has been identified. Homogeneous perovskite-type oxide powders with nanosized particles, which possess promising characteristics for their applications as functional ceramics, are easily synthesized with this method.

Original languageEnglish (US)
Pages (from-to)185-214
Number of pages30
JournalParticulate Science and Technology
Volume16
Issue number3
DOIs
StatePublished - 1998
Externally publishedYes

ASJC Scopus subject areas

  • General Chemical Engineering

Fingerprint

Dive into the research topics of 'A chemical route for the preparation of nanosized rare earth perovskite-type oxides for electroceramic applications'. Together they form a unique fingerprint.

Cite this