A cascadic multigrid algorithm for computing the Fiedler vector of graph Laplacians

John C. Urschel, Jinchao Xu, Xiaozhe Hu, Ludmil T. Zikatanov

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

In this paper, we develop a cascadic multigrid algorithm for fast computation of the Fiedler vector of a graph Laplacian, namely, the eigenvector corresponding to the second smallest eigenvalue. This vector has been found to have applications in fields such as graph partitioning and graph drawing. The algorithm is a purely algebraic approach based on a heavy edge coarsening scheme and pointwise smoothing for refinement. To gain theoretical insight, we also consider the related cascadic multigrid method in the geometric setting for elliptic eigenvalue problems and show its uniform convergence under certain assumptions. Numerical tests are presented for computing the Fiedler vector of several practical graphs, and numerical results show the efficiency and optimality of our proposed cascadic multigrid algorithm.
Original languageEnglish (US)
Pages (from-to)209-226
Number of pages18
JournalJournal of Computational Mathematics
Volume33
Issue number2
DOIs
StatePublished - Mar 1 2015
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2023-02-15

ASJC Scopus subject areas

  • Computational Mathematics

Fingerprint

Dive into the research topics of 'A cascadic multigrid algorithm for computing the Fiedler vector of graph Laplacians'. Together they form a unique fingerprint.

Cite this