TY - GEN
T1 - A Biased Sampling Method for Imbalanced Personalized Ranking
AU - Yu, Lu
AU - Pei, Shichao
AU - Zhu, Feng
AU - Li, Longfei
AU - Zhou, Jun
AU - Zhang, Chuxu
AU - Zhang, Xiangliang
N1 - Generated from Scopus record by KAUST IRTS on 2023-09-20
PY - 2022/10/17
Y1 - 2022/10/17
N2 - Pairwise ranking models have been widely used to address recommendation problems. The basic idea is to learn the rank of users' preferred items through separating items into positive samples if user-item interactions exist, and negative samples otherwise. Due to the limited number of observable interactions, pairwise ranking models face serious class-imbalance issues. Our theoretical analysis shows that current sampling-based methods cause the vertex-level imbalance problem, which makes the norm of learned item embeddings towards infinite after a certain training iterations, and consequently results in vanishing gradient and affects the model inference results. We thus propose an efficient Vital Negative Sampler (VINS) to alleviate the class-imbalance issue for pairwise ranking model, in particular for deep learning models optimized by gradient methods. The core of VINS is a bias sampler with reject probability that will tend to accept a negative candidate with a larger degree weight than the given positive item. Evaluation results on several real datasets demonstrate that the proposed sampling method speeds up the training procedure 30% to 50% for ranking models ranging from shallow to deep, while maintaining and even improving the quality of ranking results in top-N item recommendations.
AB - Pairwise ranking models have been widely used to address recommendation problems. The basic idea is to learn the rank of users' preferred items through separating items into positive samples if user-item interactions exist, and negative samples otherwise. Due to the limited number of observable interactions, pairwise ranking models face serious class-imbalance issues. Our theoretical analysis shows that current sampling-based methods cause the vertex-level imbalance problem, which makes the norm of learned item embeddings towards infinite after a certain training iterations, and consequently results in vanishing gradient and affects the model inference results. We thus propose an efficient Vital Negative Sampler (VINS) to alleviate the class-imbalance issue for pairwise ranking model, in particular for deep learning models optimized by gradient methods. The core of VINS is a bias sampler with reject probability that will tend to accept a negative candidate with a larger degree weight than the given positive item. Evaluation results on several real datasets demonstrate that the proposed sampling method speeds up the training procedure 30% to 50% for ranking models ranging from shallow to deep, while maintaining and even improving the quality of ranking results in top-N item recommendations.
UR - https://dl.acm.org/doi/10.1145/3511808.3557218
UR - http://www.scopus.com/inward/record.url?scp=85140834031&partnerID=8YFLogxK
U2 - 10.1145/3511808.3557218
DO - 10.1145/3511808.3557218
M3 - Conference contribution
SN - 9781450392365
SP - 2393
EP - 2402
BT - International Conference on Information and Knowledge Management, Proceedings
PB - Association for Computing Machinery
ER -