Abstract
The popular metal-ion batteries (MIBs) suffer from environmental and economic issues because of their heavy dependency on nonrenewable metals. Here, we propose a metal-free ammonium (NH4+)-based dual-ion battery with a record-breaking operation voltage of 2.75 V. The working mechanism of this sustainable battery involves the reversible anion (PF6−) intercalation chemistry in graphite cathode and NH4+ intercalation behavior in PTCDI (3,4,9,10-perylenetetracarboxylic diimide) anode. This new battery configuration successfully circumvented the reduction susceptibility of NH4+ and the lack of mature NH4+-rich cathodes for NH4+ion batteries (AIBs). The customized organic NH4+ electrolyte endows the graphite||PTCDI full battery with durable longevity (over 1000 cycles) and a high energy density (200 Wh kg−1). We show that the development of AIBs should be high-voltage-oriented while circumventing low operation potential to avoid NH4+ reduction.
Original language | English (US) |
---|---|
Journal | Angewandte Chemie |
DOIs | |
State | Published - Oct 25 2022 |
Bibliographical note
KAUST Repository Item: Exported on 2022-10-31Acknowledgements: Research reported in this publication was supported by King Abdullah University of Science and Technology (KAUST).
ASJC Scopus subject areas
- General Medicine