Abstract
Modern 3D-GANs synthesize geometry and texture by training on large-scale datasets with a consistent structure. Training such models on stylized, artistic data, with often unknown, highly variable geometry, and camera information has not yet been shown possible. Can we train a 3D GAN on such artistic data, while maintaining multi-view consistency and texture quality? To this end, we propose an adaptation framework, where the source domain is a pre-trained 3D-GAN, while the target domain is a 2D-GAN trained on artistic datasets. We, then, distill the knowledge from a 2D generator to the source 3D generator. To do that, we first propose an optimization-based method to align the distributions of camera parameters across domains. Second, we propose regularizations necessary to learn high-quality texture, while avoiding degenerate geometric solutions, such as flat shapes. Third, we show a deformation-based technique for modeling exaggerated geometry of artistic domains, enabling-as a byproduct- personalized geometric editing. Finally, we propose a novel inversion method for 3D-GANs linking the latent spaces of the source and the target domains. Our contributions-for the first time-allow for the generation, editing, and animation of personalized artistic 3D avatars on artistic datasets. Project Page: https:/rameenabdal.github.io/3DAvatarGAN
Original language | English (US) |
---|---|
Title of host publication | Proceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 |
Publisher | IEEE Computer Society |
Pages | 4552-4562 |
Number of pages | 11 |
ISBN (Electronic) | 9798350301298 |
DOIs | |
State | Published - 2023 |
Event | 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Vancouver, Canada Duration: Jun 18 2023 → Jun 22 2023 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
Volume | 2023-June |
ISSN (Print) | 1063-6919 |
Conference
Conference | 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 |
---|---|
Country/Territory | Canada |
City | Vancouver |
Period | 06/18/23 → 06/22/23 |
Bibliographical note
Publisher Copyright:© 2023 IEEE.
Keywords
- Image and video synthesis and generation
ASJC Scopus subject areas
- Software
- Computer Vision and Pattern Recognition