Abstract
We propose a disposable, miniaturized, moveable, fully integrated 3D inkjet-printed wireless sensor node for large area environmental monitoring applications. As a proof of concept, we show the wireless sensing of temperature, humidity and H2S levels which are important for early warnings of two critical environmental conditions namely forest fires and industrial gas leaks. The temperature sensor has TCR of -0.018/°, the highest of any inkjet-printed sensor and the H2S sensor can detect as low as 3 ppm of gas. These sensors and an antenna have been realized on the walls of a 3D-printed cubic package which encloses the microelectronics developed on a 3D-printed circuit board. Hence, 3D printing and inkjet printing have been combined in order to realize a unique low-cost, fully integrated wireless sensor node. Field tests show that these sensor nodes can wirelessly communicate up to a distance of over 100m. Our proposed sensor node can be a part of internet of things with the aim of providing a better and safe living.
Original language | English (US) |
---|---|
Title of host publication | 2017 IEEE MTT-S International Microwave Symposium, IMS 2017 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1379-1382 |
Number of pages | 4 |
ISBN (Electronic) | 9781509063604 |
DOIs | |
State | Published - Oct 4 2017 |
Event | 2017 IEEE MTT-S International Microwave Symposium, IMS 2017 - Honololu, United States Duration: Jun 4 2017 → Jun 9 2017 |
Publication series
Name | IEEE MTT-S International Microwave Symposium Digest |
---|---|
ISSN (Print) | 0149-645X |
Conference
Conference | 2017 IEEE MTT-S International Microwave Symposium, IMS 2017 |
---|---|
Country/Territory | United States |
City | Honololu |
Period | 06/4/17 → 06/9/17 |
Bibliographical note
Publisher Copyright:© 2017 IEEE.
Keywords
- 3D printing
- Environmental sensing
- Inkjet printing
- Internet-of-things (IoT)
ASJC Scopus subject areas
- Condensed Matter Physics
- Radiation
- Electrical and Electronic Engineering