Abstract
We present 3D CoMPaT, a richly annotated large-scale dataset of more than 7.19 million rendered compositions of Materials on Parts of 7262 unique 3D Models; 990 compositions per model on average. 3D CoMPaT covers 43 shape categories, 235 unique part names, and 167 unique material classes that can be applied to parts of 3D objects. Each object with the applied part-material compositions is rendered from four equally spaced views as well as four randomized views, leading to a total of 58 million renderings (7.19 million compositions × 8 views). This dataset primarily focuses on stylizing 3D shapes at part-level with compatible materials. We introduce a new task, called Grounded CoMPaT Recognition (GCR), to collectively recognize and ground compositions of materials on parts of 3D objects. We present two variations of this task and adapt state-of-art 2D/3D deep learning methods to solve the problem as baselines for future research. We hope our work will help ease future research on compositional 3D Vision. The dataset and code are publicly available at https://www.3dcompat-dataset.org/.
Original language | English (US) |
---|---|
Title of host publication | Computer Vision – ECCV 2022 - 17th European Conference, Proceedings |
Editors | Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, Tal Hassner |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 110-127 |
Number of pages | 18 |
ISBN (Print) | 9783031200731 |
DOIs | |
State | Published - 2022 |
Event | 17th European Conference on Computer Vision, ECCV 2022 - Tel Aviv, Israel Duration: Oct 23 2022 → Oct 27 2022 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 13668 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 17th European Conference on Computer Vision, ECCV 2022 |
---|---|
Country/Territory | Israel |
City | Tel Aviv |
Period | 10/23/22 → 10/27/22 |
Bibliographical note
Publisher Copyright:© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science