2D Cs 2 AgBiBr 6 with Boosted Light–Matter Interaction for High-Performance Photodetectors

Feier Fang, Henan Li, Shaofan Fang, Bo Zhou, Fu Huang, Chun Ma, Yi Wan, Shangchi Jiang, Ye Wang, Bingbing Tian, Yumeng Shi

Research output: Contribution to journalArticlepeer-review

44 Scopus citations


Lead-free double perovskite Cs2AgBiBr6 has attracted significant research interests for optoelectronic applications because of its nontoxicity, inherent stability, and high detection sensitivity. In this work, the 2D Cs2AgBiBr6 with a thickness of ≈5 nm and lateral length larger than 50 µm is successfully fabricated by a space-confined method. The fabricated ultra-thin 2D Cs2AgBiBr6 exhibits significant advantages on photodetection, due to its enhanced light–matter interaction. Remarkably, compared with bulk Cs2AgBiBr6, 2D Cs2AgBiBr6-based photodetectors exhibit dramatically improved optoelectronic properties including ultra-high detectivity (D*) of 7.4 × 1014 Jones (more than ten times), photoresponsivity (R) of 54.6 A W−1 (exceeding 4.7 times), an on/off ratio of 7.4 × 104 (more than ten times), and a fast response time of ≈1.7 ms (exceeding 30 times). In addition, due to the strong photon recycling effect of Cs2AgBiBr6, optical properties in both light absorption and emission can be effectively engineered by the material thickness, which enables a tunable wavelength-dependent photodetection. The results provide further insights on the light–matter interaction of environmentally friendly 2D perovskites related materials and shine light on their high-performance optoelectrical applications.
Original languageEnglish (US)
Pages (from-to)2001930
JournalAdvanced Optical Materials
Issue number9
StatePublished - Feb 16 2021

Bibliographical note

KAUST Repository Item: Exported on 2021-11-21
Acknowledgements: Y.S. acknowledges the support from the National Natural Science Foundation of China (grant no. 61874074), Science and Technology Project of Shenzhen (JCYJ20170817101100705), and the (Key) Project of Department of Education of Guangdong Province (grant no. 2016KZDXM008). H.L. acknowledges the support from Natural Science Foundation of SZU (grant no. 2017011) and the support from Science and Technology Project of Shenzhen (JCYJ20170817100111548). This project was supported by Shenzhen Peacock Plan (grant no. KQTD2016053112042971) and the postgraduate innovation development fund project of Shenzhen University (grant no. 315-0000470527).

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics


Dive into the research topics of '2D Cs 2 AgBiBr 6 with Boosted Light–Matter Interaction for High-Performance Photodetectors'. Together they form a unique fingerprint.

Cite this