2,7- and 4,9-Dialkynyldihydropyrene Molecular Switches: Syntheses, Properties, and Charge Transport in Single-Molecule Junctions

Max Roemer, Angus Gillespie, David Jago, David Costa-Milan, Jehan Alqahtani, Juan Hurtado-Gallego, Hatef Sadeghi, Colin J. Lambert, Peter R. Spackman, Alexandre N. Sobolev, Brian W. Skelton, Arnaud Grosjean, Mark Walkey, Sven Kampmann, Andrea Vezzoli, Peter V. Simpson, Massimiliano Massi, Inco Planje, Gabino Rubio-Bollinger, Nicolás AgraïtSimon J. Higgins, Sara Sangtarash, Matthew J. Piggott, Richard J. Nichols, George A. Koutsantonis

Research output: Contribution to journalArticlepeer-review

Abstract

This paper describes the syntheses of several functionalized dihydropyrene (DHP) molecular switches with different substitution patterns. Regioselective nucleophilic alkylation of a 5-substituted dimethyl isophthalate allowed the development of a workable synthetic protocol for the preparation of 2,7-alkyne-functionalized DHPs. Synthesis of DHPs with surface-anchoring groups in the 2,7- and 4,9-positions is described. The molecular structures of several intermediates and DHPs were elucidated by X-ray single-crystal diffraction. Molecular properties and switching capabilities of both types of DHPs were assessed by light irradiation experiments, spectroelectrochemistry, and cyclic voltammetry. Spectroelectrochemistry, in combination with density functional theory (DFT) calculations, shows reversible electrochemical switching from the DHP forms to the cyclophanediene (CPD) forms. Charge-transport behavior was assessed in single-molecule scanning tunneling microscope (STM) break junctions, combined with density functional theory-based quantum transport calculations. All DHPs with surface-contacting groups form stable molecular junctions. Experiments show that the molecular conductance depends on the substitution pattern of the DHP motif. The conductance was found to decrease with increasing applied bias.
Original languageEnglish (US)
JournalJournal of the American Chemical Society
DOIs
StatePublished - Jun 29 2022
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Colloid and Surface Chemistry
  • Chemistry(all)
  • Catalysis

Fingerprint

Dive into the research topics of '2,7- and 4,9-Dialkynyldihydropyrene Molecular Switches: Syntheses, Properties, and Charge Transport in Single-Molecule Junctions'. Together they form a unique fingerprint.

Cite this