TY - JOUR
T1 - 2,3,9,10,16,17,24,25-Octakis(octyloxycarbonyl)phthalocyanines. Synthesis, spectroscopic, and electrochemical characteristics
AU - Wang, Xueying
AU - Zhang, Yuexing
AU - Sun, Xuan
AU - Bian, Yongzhong
AU - Ma, Changqin
AU - Jiang, Jianzhuang
PY - 2007/8/20
Y1 - 2007/8/20
N2 - A series of three novel 2,3,9,10,16,17,24,25-octakis(octyloxycarbonyl) phthalocyanine compounds M[Pc(COOC8H17)8] (M = 2H, Cu, Zn) (1-3) have been synthesized via the cyclic tetramerization of 4,5-di(octyloxycarbonyl)phthalonitrile, which was obtained by a newly developed procedure with o-xylene as starting material, promoted with organic base 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in the absence and presence of metal salt like M(acac)2·H2O (M = Cu, Zn) in n-octanol at 120 °C. In addition to elemental analysis, these novel octakis(octyloxycarbonyl)-substituted phthalocyanine compounds have been characterized by a series of spectroscopic methods. The electrochemistry of these compounds was also studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods. A significant shift to the positive direction for both the first oxidation and the first reduction of compound 1, relative to H2Pc, reveals the electron-withdrawing nature of octyloxycarbonyl groups attached to the peripheral positions of phthalocyanine. The effect of peripheral octyloxycarbonyl substitution on the electrochemistry of the series of phthalocyanines 1-3 has been reasonably explained by theoretical calculation results using the density functional theory (DFT) method.
AB - A series of three novel 2,3,9,10,16,17,24,25-octakis(octyloxycarbonyl) phthalocyanine compounds M[Pc(COOC8H17)8] (M = 2H, Cu, Zn) (1-3) have been synthesized via the cyclic tetramerization of 4,5-di(octyloxycarbonyl)phthalonitrile, which was obtained by a newly developed procedure with o-xylene as starting material, promoted with organic base 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in the absence and presence of metal salt like M(acac)2·H2O (M = Cu, Zn) in n-octanol at 120 °C. In addition to elemental analysis, these novel octakis(octyloxycarbonyl)-substituted phthalocyanine compounds have been characterized by a series of spectroscopic methods. The electrochemistry of these compounds was also studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods. A significant shift to the positive direction for both the first oxidation and the first reduction of compound 1, relative to H2Pc, reveals the electron-withdrawing nature of octyloxycarbonyl groups attached to the peripheral positions of phthalocyanine. The effect of peripheral octyloxycarbonyl substitution on the electrochemistry of the series of phthalocyanines 1-3 has been reasonably explained by theoretical calculation results using the density functional theory (DFT) method.
UR - http://www.scopus.com/inward/record.url?scp=34548319356&partnerID=8YFLogxK
U2 - 10.1021/ic700517e
DO - 10.1021/ic700517e
M3 - Article
C2 - 17655291
AN - SCOPUS:34548319356
SN - 0020-1669
VL - 46
SP - 7136
EP - 7141
JO - Inorganic Chemistry
JF - Inorganic Chemistry
IS - 17
ER -