Description
Living cells maintain stable transcriptional programs while exhibiting plasticity that allows them to respond to environmental stimuli. The Polycomb repressive complex 2 (PRC2) is a key regulator of chromatin structure that maintains gene silencing through the methylation of histone H3 on lysine 27 (H3K27me), establishing chromatin-based memory. Two variants of PRC2 are present in mammalian cells, PRC2-EZH2 which is predominantly present in differentiating cells, and PRC2-EZH1 that predominates in post-mitotic tissues. PRC2-EZH1α/β pathway is involved in the response of muscle cells to oxidative stress. Atrophied muscle cells respond to oxidative stress by enabling the nuclear translocation of EED and its assembly with EZH1α and SUZ12. Here we prove that the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) long noncoding RNA (lncRNA) is required for the assembly of PRC2-EZH1 components. The absence of MALAT1 significantly decreased the association between EED and EZH1α proteins. Biochemical analysis shows that the presence of MALAT1 increases the enzymatic activity of PRC2-EZH1 in vitro. In addition, we show that the simultaneous expression of PRC2 core components is necessary for their solubility. The successful expression of PRC2 proteins enables the execution of several downstream experiments, which will further explain the nature of the interplay between MALAT1 and PRC2.
Date made available | 2019 |
---|---|
Publisher | KAUST Research Repository |