A study of wild tomatoes endemic to the Galapagos Islands as a source for salinity tolerance traits

Dataset

Description

Salinity is a major concern in agriculture since it adversely affects plant growth, development, and yield. Domestication of crops exerted strong selective pressure and reduced their genetic diversity. Meanwhile, wild species continued to adapt to their environment becoming valuable sources of genetic variation, with the potential for enhancing modern crops performance in today’s changing climate. Some wild species are found in highly saline environments; remarkable examples are the endemic wild tomatoes from the Galapagos Islands, forming the Solanum cheesmaniae and Solanum galapagense species (hereafter termed Galapagos tomatoes). These wild tomatoes adapted to thrive in the coastal regions of the Galapagos Islands. The present work includes a thorough characterization of a collection of 67 accessions of Galapagos tomatoes obtained from the Tomato Genetics Resource Center (TGRC). Genotyping-by-sequencing (GBS) was performed to establish the population structure and genetic distance within the germplasm collection. Both species were genetically differentiated, and a substructure was found in S. cheesmaniae dividing the accessions in two groups based on their origin: eastern and western islands. Phenotypic studies were performed at the seedling stage, subjecting seedlings to 200 mM NaCl for 10 days. Various traits were recorded and analysed for their contribution to salinity tolerance, compared to control conditions. Large natural variation was found across the collection in terms of salt stress responses and different possible salt tolerant mechanisms were identified. Six accessions were selected for further work, based on their good performance under salinity. This experiment included scoring several plant growth and yield-related traits, as well as RNA sequencing (RNAseq) at the fruit-ripening stage, under three different NaCl concentrations. Accession LA0421 showed an increased yield of almost 50% in mild salinity (150 mM NaCl) compared to control conditions. The transcriptome data obtained could reveal the genes involved in the salt stress-related yield increase. The knowledge obtained so far will be useful for scientists and breeders to select accessions of interest based on recorded traits. It will allow the use of Galapagos tomatoes as genetic sources for salinity tolerance traits in commercial tomatoes, thereby contributing to feed and nourish the growing human population in the years to come.
Date made available2017
PublisherKAUST Research Repository

Cite this